Auf Pausenhof.de findest du viele Arbeiten, Facharbeiten und Referate für die Schule.

Referate und Hausarbeiten : Mathematik

< zurück zu Referate - Mathematik

Der Aldorithmus von Bresenham


Der Algorithmus von Bresenham

Das Bresenham-Verfahren beruht im wesentlichen auf zwei grundsätzliche
Beobachtungen:

- Es reicht ein Verfahren aus um Geraden mit einer
Steigung im Bereich von null bis eins darzustellen.

- Es kommen für die Linie prinzipiell immer nur zwei Punkte in Frage, die als nächstes gezeichnet werden
dürfen.




Originaldokument enthält an dieser Stelle eine Grafik!Original document contains a graphic at this position!
Die erste Behauptung läßt sich einfach erklären. Wenn eine Gerade eine Steigung von minimal null und maximal eins hat, dann liegt sie zwischen
einer Waagerechten und einer Geraden, die einen Winkel von 45 Grad mit
der X-Achse einschließt.
Es gibt natürlich auch Geraden mit einer steileren Steigung als eins. Doch alle diese Geraden kann man auch erhalten, indem man eine Gerade mir der Steigung null bis eins um die Winkelhalbierende spiegelt. Dies kann man leicht
erreichen, indem man die X- und Y- Koordinaten austauscht.
Bleiben noch Geraden mit einer negativen Steigung, also "fallende" Geraden,
übrig. Doch auch diese lassen sich herleiten, indem man die entsprechende Gerade an der X-Achse spiegelt. Das erreicht man durch das Umdrehen des Vorzeichens der Y-Koordinate.

Die zweite wichtige Voraussetzung des Algorithmus basiert nun auf der erstgenannten. Sie besagt, daß bei allen Geraden die aufwendigen Berechnungen unter Einbeziehung der Steigung überflüssig sind. Wenn man vom Anfangspunkt einer "Grund-Geraden" ausgeht, kommen generell nur zwei Punkte in Frage, die als nächste gezeichnet werden dürfen.
Beginnend mit dem Anfangspunkt wird kontinuierlich entschieden, ob der rechts davon liegende Punkt A oder B dargestellt werden muß. Von diesem Punkt wird wieder weiter entschieden.

Jetzt stellt sich die Frage wie entschieden wird?
Dazu muß herausgefunden werden, welcher Punkt, A oder B, näher der tatsächlichen Gerade liegt. Es wird von der Geradengleichung y = kx + d
ausgegang...

Du möchtest das komplette Referat lesen?

Gib einfach deine E-Mail-Adresse ein, damit wir das komplette Referat kostenlos als PDF zur Verfügung stellen können! Du kannst es dann bearbeiten und ausdrucken.

* Pflichtangaben